Slip-Spring and Kink Dynamics Models for Fast Extensional Flow of Entangled Polymeric Fluids
نویسندگان
چکیده
منابع مشابه
Yieldlike constitutive transition in shear flow of entangled polymeric fluids.
We describe an unexpected constitutive transition in entangled polymer solutions. At and beyond a critical stress, the initial spatially homogeneous and well-entangled sample transforms from its entangled (coiled) state into a fully disentangled (stretched) state over a period during which the resulting shear rate increases in a spatially inhomogeneous fashion. In the mode of controlled shear r...
متن کاملEntangled chain dynamics of polymer knots in extensional flow.
We formulate a coarse-grained molecular-dynamics model of polymer chains in solution that includes hydrodynamic interactions, thermal fluctuations, nonlinear elasticity, and topology-preserving solvent mediated excluded volume interactions. The latter involve a combination of potential forces with explicit geometric detection and tracking of chain entanglements. By solving this model with numer...
متن کاملCriterion for extensional necking instability in polymeric fluids.
We study the linear instability with respect to necking of a filament of polymeric fluid undergoing uniaxial extension. Contrary to the widely discussed Considère criterion, we find the onset of instability to relate closely to the onset of downward curvature in the time (and so strain) evolution of the zz component of the molecular strain, for extension along the z axis. In establishing this r...
متن کاملDynamics � and flow - induced phase separ - ation in polymeric fluids
The past few years have seen many advances in our understanding of the dynamics of polymeric fluids. These include improvements on the successful reptation theory; an emerging molecular theory of semiflexible chain dynamics; and an understanding of how to calculate and classify “phase diagrams” for flow-induced transitions. Experimentalists have begun mapping out the phase behavior of wormlike ...
متن کاملSlip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels
The steady-state fully-developed laminar flow of non-Newtonian power-law fluids is examined in a circular microchannel with slip boundary condition and under an imposed constant wall heat flux. Effects of slip as well as the hydrodynamic and thermal key parameters on heat transfer and entropy generation are investigated. The results reveal that increasing the Brinkman number and the flow behavi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polymers
سال: 2019
ISSN: 2073-4360
DOI: 10.3390/polym11030465